Abstract
Stevens‒Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) are severe cutaneous adverse drug reactions characterized by widespread keratinocyte cell death and epidermal detachment. At present, there is little understanding of how the detachment occurs or how it is abrogated by the TNF-α inhibitor etanercept, an effective SJS/TEN treatment. RNA sequencing was used to identify upregulated transcripts in formalin-fixed paraffin-embedded SJS/TEN skin biopsies. Epidermal matrix metalloproteinase 9 (MMP9) expression was assessed by immunohistochemistry in skin biopsies and cultured human skin explants exposed to serum from patients with cutaneous adverse drug reactions. TNF-α‒induced MMP9 expression and activity and its abrogation by etanercept were determined using the HaCaT immortalized keratinocyte cell line. Epidermal MMP9 expression was significantly higher in SJS/TEN skin (70.6%) than in healthy control skin (0%) (P= 0.0098) and nonbullous skin reactions (10.7%) (P= 0.0002). SJS/TEN serum induced significant MMP9 expression and collagenase activity in healthy skin explants, which was reduced by etanercept. Etanercept was also able to negate the TNF-α‒induced MMP9 expression in the HaCaT cell line. Data suggest that elevated epidermal MMP9 expression and collagenase activity are a putative pathogenic mechanism in SJS/TEN, which is limited by etanercept. Modulation of MMP9 expression and activity represents, to our knowledge, a previously unreported therapeutic target for the treatment of SJS/TEN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.