Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, usually arising from a background of chronic inflammatory disease. Tumor necrosis factor alpha (TNF-alpha) is a pro-inflammatory cytokine produced in response to tissue injury, endotoxin exposure or infection and TNF-alpha signalling in hepatocytes is associated with an increase in oxidative stress. DNA is vulnerable to reactive oxygen species (ROS)-induced damage, which is highly mutagenic. Cells respond to DNA damage through the stabilisation of the tumor suppressor p53, which maintains genomic fidelity through induction of a cell cycle arrest in order to allow repair or elimination of the damaged cell through apoptosis. This study was carried out to determine if TNF-alpha caused oxidative DNA damage in primary cultures of murine hepatocytes and whether any damage would result in the induction of the tumor suppressor p53 and cell-cycle arrest. Using a modified Comet assay, to measure DNA damage we have demonstrated that TNF-alpha causes the formation of 8-oxo-deoxyguanosine (8-oxodG), an established marker of oxidative DNA damage, and a lesion associated with chronic hepatitis in human livers. In addition, the increase in DNA damage did not result in p53 stabilisation and TNF-alpha caused an increase in cell-cycle progression. We believe that this study indicates a possible putative role for TNF-alpha in the early stages of malignant transformation of hepatocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.