Abstract

Secondary structural and functional abnormalities of the neurovascular unit are important pathological mechanisms following traumatic brain injury (TBI). The neurovascular unit maintains blood-brain barrier and vascular integrity through interactions among glial cells, pericytes and endothelial cells. Trauma-induced neuroinflammation and oxidative stress may act as initiating factors for pathological damage after TBI, which in turn impairs cerebral microcirculatory function. Studies have shown that the tumor necrosis factor α (TNF-α)/nuclear factor-κB (NF-κB) pathway regulates inflammation and oxidative damage, but its role in pericyte-mediated cerebral microcirculation are currently unknown. Herein, we assessed TNF-α/NF-κB signaling and inducible nitric oxide synthase (iNOS), and the effects of the TNF-α inhibitor infliximab after TBI. Whether pericyte damage is dependent on the TNF-α/NF-κB/iNOS axis was also evaluated to explore the mechanisms underlying disturbances in the microcirculation after TBI. Microglia are activated after TBI to promote inflammatory factors and free radical release, and upregulate NF-κB and iNOS expression. After lipopolysaccharide treatment, the activity of TNF-α/NF-κB/iNOS in BV2 cells was also upregulated. Inhibition of TNF-α using infliximab reduced NF-κB phosphorylation and nuclear translocation and downregulated iNOS expression, which attenuated the inflammation and oxidative damage. Meanwhile, inhibition of TNF-α reversed pericyte marker loss, and improved pericyte function and microcirculation perfusion after TBI. In conclusion, our study suggests that microglia released TNF-α after TBI, which promoted neuroinflammation and oxidative stress by activating downstream NF-κB/iNOS signals, and this led to pericyte-mediated disturbance of the cerebral microcirculation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.