Abstract

Aspergillus fumigatus is commonly associated with allergic bronchopulmonary aspergillosis in patients with severe asthma in which chronic airway neutrophilia predicts a poor outcome. We were able to recapitulate fungus-induced neutrophilic airway inflammation in a mouse model in our efforts to understand the underlying mechanisms. However, neutrophilia occurred in a mouse strain-selective fashion, providing us with an opportunity to perform a comparative study to elucidate the mechanisms involved. Here we show that TNF-α, largely produced by Ly6c(+)CD11b(+) dendritic cells (DCs), plays a central role in promoting IL-17A from CD4(+) T cells and collaborating with it to induce airway neutrophilia. Compared with C57BL/6 mice, BALB/c mice displayed significantly more TNF-α-producing DCs and macrophages in the lung. Lung TNF-α levels were drastically reduced in CD11c-DTR BALB/c mice depleted of CD11c+ cells, and TNF-α-producing Ly6c(+)CD11b(+) cells were abolished in Dectin-1(-/-) and MyD88(-/-) BALB/c mice. TNF-α deficiency itself blunted accumulation of inflammatory Ly6c(+)CD11b(+) DCs. Also, lack of TNF-α decreased IL-17A but promoted IL-5 levels, switching inflammation from a neutrophil to eosinophil bias resembling that in C57BL/6 mice. The TNF-α(low) DCs in C57BL/6 mice contained more NF-κB p50 homodimers, which are strong repressors of TNF-α transcription. Functionally, collaboration between TNF-α and IL-17A triggered significantly higher levels of the neutrophil chemoattractants keratinocyte cytokine and macrophage inflammatory protein 2 in BALB/c mice. Our study identifies TNF-α as a molecular switch that orchestrates a sequence of events in DCs and CD4 T cells that promote neutrophilic airway inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.