Abstract

The expression status of proinflammatory cytokines in high-altitude pulmonary arterial hypertension (PAH) has been well studied. However, the changes in interleukin (IL)-8 and tumor necrosis factor α (TNF-α) during the reversible changes in pulmonary vascular remodeling (PVR) in PAH after detaching from a hypobaric hypoxic environment have not been elucidated. This investigation elucidated a high-altitude PAH rat model. Then, PAH rats in the high-altitude group were maintained in the high-altitude area, and rats in the low-altitude group returned to the low-altitude area. After 0, 10, 20, and 30 days of PAH modeling, right ventricular systolic pressure (RVSP) and the mean pulmonary arterial pressure (mPAP) were assessed. Right ventricular (RV) hypertrophy was reflected by the ratio of RV/[left ventricle + interventricular septum (S)]. Pathological changes in PVR were accessed by hematoxylin-eosin staining, and medial wall thickness (WT%) and medial wall area (WA%) were measured. TNF-α and IL-8 levels in pulmonary artery tissues and blood were measured with Western blot assay and enzyme-linked immunosorbent assay, respectively. Our results showed that PAH rats exhibited a substantial increase in RVSP and mPAP, RV hypertrophy, PVR, and enhanced generation of TNF-α and IL-8. Then, we found that these pathological changes were gradually aggravated and TNF-α and IL-8 levels were increased in rats in the high-altitude group after 10, 20, and 30 days of PAH modeling. In contrast, the mPAP was decreased and PVR was alleviated in rats in the low-altitude group, accompanying with reduced TNF-α and IL-8 production. In conclusion, our study demonstrated that the generation of TNF-α and IL-8 was also reversible during the reversible changes in PVR after detaching from a hypobaric hypoxic environment. Thus, proinflammatory cytokine TNF-α and IL-8 levels are positively correlated with PVR severity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.