Abstract
Tauopathies are a family of neurodegenerative diseases characterized by the presence of abnormally hyperphosphorylated Tau protein. Several studies have proposed that increased extracellular Tau (eTau) leads to the spread of cerebral tauopathy. However, the molecular mechanisms underlying eTau-induced neurotoxicity remain unclear. Previous in vitro studies reported that the ecto-enzyme tissue-nonspecific alkaline phosphatase (TNAP) dephosphorylate eTau at different sites increasing its neurotoxicity. Here, we confirm TNAP protein upregulation in the brains of Alzheimer's patients and found a similar TNAP increase in Pick's disease patients and P301S mice, a well-characterized mouse model of tauopathies. Interestingly, the conditional overexpression of TNAP causes intracellular Tau hyperphosphorylation and aggregation in cells neighbouring those overexpressing the ectoenzyme. Conversely, the genetic disruption of TNAP reduced the dephosphorylation of eTau and decreased neuronal hyperactivity, brain atrophy, and hippocampal neuronal death in P301S mice. TNAP haploinsufficiency in P301S mice prevents the decreased anxiety-like behaviour, motor deficiency, and increased memory capacity and life expectancy. Similar results were observed by the in vivo pharmacological blunting of TNAP activity. This study provides the first in vivo evidence demonstrating that raised TNAP activity is critical for Tau-induced neurotoxicity and suggest that TNAP blockade may be a novel and efficient therapy to treat tauopathies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.