Abstract

Analysis of genes required for host infection will provide clues to the drivers of evolutionary fitness of pathogens like Vibrio cholerae, a mounting threat to global heath. We used transposon insertion site sequencing (Tn-seq) to comprehensively assess the contribution of nearly all V. cholerae genes toward growth in the infant rabbit intestine. Four hundred genes were identified as critical to V. cholerae in vivo fitness. These included most known colonization factors and several new genes affecting the bacterium's metabolic properties, resistance to bile, and ability to synthesize cyclic AMP-GMP. Notably, a mutant carrying an insertion in tsiV3, encoding immunity to a bacteriocidal type VI secretion system (T6SS) effector VgrG3, exhibited a colonization defect. The reduced in vivo fitness of tsiV3 mutants depends on their cocolonization with bacterial cells carrying an intact T6SS locus and VgrG3 gene, suggesting that the V. cholerae T6SS is functional and mediates antagonistic interbacterial interactions during infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.