Abstract

BackgroundFusarium crown rot is major disease in wheat. However, the wheat defense mechanisms against this disease remain poorly understood.ResultsUsing tandem mass tag (TMT) quantitative proteomics, we evaluated a disease-susceptible (UC1110) and a disease-tolerant (PI610750) wheat cultivar inoculated with Fusarium pseudograminearum WZ-8A. The morphological and physiological results showed that the average root diameter and malondialdehyde content in the roots of PI610750 decreased 3 days post-inoculation (dpi), while the average number of root tips increased. Root vigor was significantly increased in both cultivars, indicating that the morphological, physiological, and biochemical responses of the roots to disease differed between the two cultivars. TMT analysis showed that 366 differentially expressed proteins (DEPs) were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment in the two comparison groups, UC1110_3dpi/UC1110_0dpi (163) and PI610750_3dpi/PI610750_0dpi (203). It may be concluded that phenylpropanoid biosynthesis (8), secondary metabolite biosynthesis (12), linolenic acid metabolites (5), glutathione metabolism (8), plant hormone signal transduction (3), MAPK signaling pathway-plant (4), and photosynthesis (12) contributed to the defense mechanisms in wheat. Protein-protein interaction network analysis showed that the DEPs interacted in both sugar metabolism and photosynthesis pathways. Sixteen genes were validated by real-time quantitative polymerase chain reaction and were found to be consistent with the proteomics data.ConclusionThe results provided insight into the molecular mechanisms of the interaction between wheat and F. pseudograminearum.

Highlights

  • Fusarium crown rot is major disease in wheat

  • At 3 days post-inoculation, light brown symptoms of disease initially appeared on the stem bases of the susceptible cultivar UC1110, which indicated that the incubation period was over (Fig. 1a, b)

  • Through tandem mass tag (TMT)-based quantitative proteomic analysis, we confirmed that the physiological and biochemical responses of the wheat disease-tolerant cultivar PI610750 and disease-susceptible cultivar UC1110 were significantly different under F. pseudograminearum stress

Read more

Summary

Introduction

Fusarium crown rot is major disease in wheat. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a major threat to wheat production. Hyphae spread from the culm base vertically through the tissues, initially through the hypoderm and pith cavity in culm tissues [2] This pathogen mainly affects wheat, durum wheat F. pseudograminearum causes wheat crown rot in China, and in Henan, which is the largest wheat production province, the environmental conditions are especially suitable for F. pseudograminearum. This pathogen may present a serious threat to wheat production in the future [8]. Improving the genetic resistance of wheat to crown rot is an important objective

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.