Abstract

Scavenger receptors (SRs) constitute a family of membrane-bound receptors that bind to multiple ligands. The SR family of proteins is involved in removing cellular debris, oxidized low-density lipoproteins, and pathogens. Specifically, class C scavenger receptors (SR-C) have also been reported to be involved in phagocytosis of gram-positive and -negative bacteria in Drosophila and viruses in shrimp. However, reports are unavailable regarding the role of SR-C in antifungal immune mechanisms in insects. In this study, a full-length Tenebrio molitor SR-C (TmSR-C) sequence was obtained by 5′- and 3′-Rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The TmSR-C full-length cDNA comprised 1671 bp with 5′- and 3′-untranslated regions of 23- and 107-bp, respectively. TmSR-C encodes a putative protein of 556 amino acid residues that is constitutively expressed in all tissues of late instar larvae and 2-day-old adults, with the highest transcript levels observed in hemocytes of larvae and adults. TmSR-C mRNA showed a 2.5-fold and 3-fold increase at 24 and 6 h after infection with Candida albicans and β-glucan, respectively. Immunoassay with TmSR-C polyclonal antibody showed induction of the putative protein in the cytosols of hemocytes at 3 h after inoculation of C. albicans. RNA interference (RNAi)-based gene silencing and phagocytosis assays were used to understand the role of TmSR-C in antifungal immunity. Silencing of TmSR-C transcripts reduced the survivability of late instar larvae at 2 days post-inoculation of C. albicans, Escherichia coli, or Staphylococcus aureus. Furthermore, in TmSR-C-silenced larvae, there was a decline in the rate of microorganism phagocytosis. Taken together, results of this study suggest that TmSR-C plays a pivotal role in phagocytosing not only fungi but also gram-negative and -positive bacteria in T. molitor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.