Abstract

BackgroundTransmembrane serine protease 4 (TMPRSS4) is a cell surface–anchored serine protease. Elevated expression of TMPRSS4 correlates with poor prognosis in colorectal cancer, gastric cancer, prostate cancer, non–small cell lung cancer, and other cancers. Previously, we demonstrated that TMPRSS4 promotes invasion and proliferation of prostate cancer cells. Here, we investigated whether TMPRSS4 confers cancer stem–like properties to prostate cancer cells and characterized the underlying mechanisms.MethodsAcquisition of cancer stem–like properties by TMPRSS4 was examined by monitoring anchorage-independent growth, tumorsphere formation, aldehyde dehydrogenase (ALDH) activation, and resistance to anoikis and drugs in vitro and in an early metastasis model in vivo. The underlying molecular mechanisms were evaluated, focusing on stemness-related factors regulated by epithelial–mesenchymal transition (EMT)-inducing transcription factors. Clinical expression and significance of TMPRSS4 and stemness-associated factors were explored by analyzing datasets from The Cancer Genome Atlas (TCGA).ResultsTMPRSS4 promoted anchorage-independent growth, ALDH activation, tumorsphere formation, and therapeutic resistance of prostate cancer cells. In addition, TMPRSS4 promoted resistance to anoikis, thereby increasing survival of circulating tumor cells and promoting early metastasis. These features were accompanied by upregulation of stemness-related factors such as SOX2, BMI1, and CD133. SLUG and TWIST1, master EMT-inducing transcription factors, made essential contributions to TMPRSS4-mediated cancer stem cell (CSC) features through upregulation of SOX2. SLUG stabilized SOX2 via preventing proteasomal degradation through its interaction with SOX2, while TWIST1 upregulated transcription of SOX2 by interacting with the proximal E-box element in the SOX2 promoter. Clinical data showed that TMPRSS4 expression correlated with the levels of SOX2, PROM1, SNAI2, and TWIST1. Expression of SOX2 was positively correlated with that of TWIST1, but not with other EMT-inducing transcription factors, in various cancer cell lines.ConclusionsTogether, these findings suggest that TMPRSS4 promotes CSC features in prostate cancer through upregulation of the SLUG- and TWIST1-induced stem cell factor SOX2 beyond EMT. Thus, TMPRSS4/SLUG–TWIST1/SOX2 axis may represent a novel mechanism involved in the control of tumor progression.

Highlights

  • Transmembrane serine protease 4 (TMPRSS4) is a cell surface–anchored serine protease

  • Lee et al J Exp Clin Cancer Res (2021) 40:372. Together, these findings suggest that TMPRSS4 promotes cancer stem cell (CSC) features in prostate cancer through upregulation of the SLUG- and TWIST1-induced stem cell factor SOX2 beyond epithelial–mesenchymal transition (EMT)

  • TMPRSS4 promotes anchorage‐independent growth of prostate cancer cells In previous work, we observed that high expression of TMPRSS4 in prostate cancer patients was significantly correlated with reduced disease-free survival

Read more

Summary

Introduction

Transmembrane serine protease 4 (TMPRSS4) is a cell surface–anchored serine protease. The EMT is accompanied by changes at the molecular level: epithelial markers such as E-cadherin are downregulated, and mesenchymal markers such as vimentin are upregulated These changes are usually mediated, directly or indirectly, by EMT-inducing transcription factors, such as members of the Snail, ZEB, and basic helix-loop-helix (bHLH) families [4,5,6,7]. These transcription factors induce EMT and cancer cell migration/invasion and generate cells with self-renewal capacity; elevated resistance to apoptosis, anoikis, and therapeutics; the ability to override senescence; and proangiogenic and proinflammatory activities [4, 6, 8, 9].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call