Abstract

Planning for autonomous vehicles to merge into high‐density traffic flows within limited mileage is quite challenging. Specifically, the driving trajectory will inevitably have intersections with other vehicles whose driving intentions can't be directly observed. Herein, a two‐stage algorithm framework that is decomposed into the longitudinal and lateral planning processes for online merging planning is proposed. An improved particle filter is used to estimate the driving models of surrounding vehicles for predicting their future driving intentions. Based on Monte Carlo tree search (MCTS), different action spaces are evaluated for longitudinal merging gap selection and lateral interactive merging operation, while heuristic pruning is used to reduce the computation cost. Moreover, the coefficients related to the driving styles are introduced, and their influences on merging performance are analyzed. Finally, the proposed algorithm is implemented in a two‐lane simulation environment. The results show that the proposal has outperformed other baseline methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.