Abstract

Abstract Although immunotherapy works well in glioblastoma (GBM) pre-clinical mouse models, the therapy has not demonstrated efficacy in GBM patients. Since recent studies have linked the gut microbial composition to the success with immunotherapy for other cancers, we utilized a novel humanized microbiome (HuM) model in order to study the response to immunotherapy in a pre-clinical mouse model of GBM. We used five healthy human donors for fecal transplantation of gnotobiotic mice since it is now recognized that microbe strain level differences render individual humans with a unique microbial community composition. After the transplanted microbiomes stabilized, the mice were bred to generate 5 independent humanized mouse lines (humanized microbiome HuM1-HuM5). Analysis of shotgun metagenomic sequencing data from fecal samples revealed a unique microbiome composition with significant differences in diversity and microbial composition among HuM1-HuM5 lines. We next analyzed the growth of intracranial glioma cells in the HuM lines. All HuM mouse lines were susceptible to GBM transplantation, and exhibited similar median survival ranging from 19-26 days. Interestingly, we found that HuM lines responded differently to the immune checkpoint inhibitor anti-PD-1. Specifically, we demonstrate that HuM1, HuM4, and HuM5 mice are non-responders to anti-PD-1 resulting in the death of the mice from the intracranial tumors, while HuM2 and HuM3 mice are responsive to anti-PD-1 and displayed significantly increased survival compared to isotype controls. Bray-Curtis cluster analysis of the 5 HuM gut microbial communities revealed that HuM2 and HuM3 were closely related. Detailed taxonomic comparison analysis at the top 5 across all HuM mouse lines revealed that Bacteroides cellulosilyticus was commonly found between HuM2 and HuM3 with high abundances. The results of our study establish the utility of humanized microbiome mice as avatars to delineate features of the host interaction with gut microbe communities needed for effective immunotherapy against GBM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call