Abstract

AbstractViral vectors and electroporation (EP)-mediated gene transfers are efficient means of inducing somatic mosaicism in mice, but they lack the exquisite control over transgene copy number, gene zygosity, and genomic-locus speci-ficity that genetically engineered mouse models (GEMMs) provide. Here, we develop and demonstrate a simple and generalizable in vivo method, mosaic analysis by dual recombinase-mediated cassette exchange (MADR). MADR allows for stable labeling of mutant cells express transgenic elements from a precisely-defined chromosomal locus. To test our method, we generated reporter-labeled lineages from stem and progenitor cells in a well-defined Rosa26mTmG mouse. We demonstrate the power and versatility of MADR by creating novel glioma models with mixed, reporter-defined zygosity or with “personalized,” H3.3-containing driver mutation signatures from pediatric glioma-each manipulation altering the profile of resulting tumors. Thus, MADR provides a high-throughput genetic platform for the dissection of development and disease, and this rapid method can be applied to the thousands of existing gene-trap mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.