Abstract

Abstract OBJECTIVE Glioblastoma (GBM) is among the most common of malignant brain tumours, with a median post-surgical survival of less than one year. Over the past several decades, therapies that appeared promising in mice models have failed during clinical trials due to the differences encountered during translation of research from model organisms to humans. To partially mitigate these difficulties in translation, we present a human cortical organotypic culture based GBM model, which allows us to manipulate individual components of the tumour environment in order to investigate the influence of different cell types in the immunosuppressive tumour microenvironment. METHODS Human neocortical tissue (at least 2 cm away from the tumour core) or entry cortex from epilepsy surgery guided by intraoperative neuro navigation, was cultured for up to 14 days post resection using an optimized medium. The cultured tissue was further injected with patient derived human GBM cells to create an ex vivo human model of glioblastoma model. The role of astrocytes in the tumour microenvironment was studied using microglia loss of function model. RESULTS Our established human neo-cortical slice model can recapitulate an in-vivo characteristics of glioblastoma from functional and imaging aspect. Our data corroborate differences between astrocytes in human and murine models in different reactive states, shows that the glioblastoma microenvironment can be difficult to be accurately modelled using murine models. Results from our human microglia depletion model, provided ample evidence that complex interaction of astrocytes and microglia cells, promotes an immunosuppressive environment in Glioblastoma by releasing high concentration of IL10 and TGFbeta (p< 0.001). CONCLUSION Our model therefore has potential applications to the fields of neuroscience, neuro-oncology, and pharmacotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call