Abstract

In the industrial large-scale chlor-alkali process, the electrocatalytic chlorine evolution reaction (CER) is a crucial half anodic reaction. However, the concomitant oxygen evolution reaction (OER) is unavoidable by using the noble metal-based dimensionally stable anodes (DSAs) as CER benchmark catalysts. Through purposely screening six TMN4 complexes embedded graphene with the demonstrated low performance of OER, our density functional theory (DFT) results predict that NiN4 complex embedded graphene (NiN4@G) can efficiently catalyse the CER. This single-atom catalyst (SAC) shows superior CER activity with the ultralow thermodynamic overpotential of 0.014 V via the Cl* intermediate instead of the formation of the ClO*. Moreover, its high theoretical overpotential of OER inherently promotes the selectivity of chlorine evolution. The analyses of the bonding mechanism between TM and Cl atoms reveal that their electrostatic attraction forces can be a good descriptor for the discovery of high-performance CER electrocatalysts. Our findings may broaden the scope of CER catalysts design beyond DSAs with the maximized metal atom utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call