Abstract

Abstract While cancer-associated fibroblasts (CAFs) and their pro-tumoral effects have been demonstrated in systemic cancers, CAFs had been presumed absent in glioblastoma given the lack of normal fibroblasts in the healthy brain. Here, we show that 5–26% (mean=12%) of cells in human glioblastomas express CAF markers α-SMA or PDGFR-β, morphologically resemble fibroblasts, and transcriptomically resemble by RNA-seq CAFs from other cancers. Glioblastoma CAFs were chemotactically attracted to glioblastoma-initiating stem cells (P=0.02). While glioblastoma CAFs did not affect differentiated glioblastoma cell proliferation (P=0.4), CAFs increased glioblastoma stem cell proliferation (P=0.002) and expression of glioblastoma stem cell-associated genes (P< 0.001). To identify mediators of CAF/glioblastoma stem cell interactions, we created a resource of inferred crosstalk by mapping the expression of receptors to that of their cognate ligands/agonists, using our RNA-seq results from glioblastoma CAFs and stem cells, revealing PDGF-β/PDGFR and osteopontin/CD44 to mediate stem cell recruitment of CAFs and CAF enrichment of stem cells, as confirmed by blocking antibodies (P=0.02–0.03). CAFs also render the glioblastoma microenvironment more pro-tumoral by promoting M2 polarization of tumor-associated macrophages (P=0.01), an effect we found to arise from unique CAF production of the EDA splice variant of fibronectin binding toll-like receptor 4 (TLR4), a known EDA receptor expressed by macrophages (P=0.02). In patient glioblastomas, CAFs were enriched 3-fold in the subventricular zone (SVZ) (P=0.04) which houses the neural stem cells that generate glioblastoma stem cells. SVZs from epilepsy cases or autopsies of glioblastoma-containing brains without ventricular involvement lacked CAFs. Depleting CAFs in xenografts derived from neurosphere-containing glioblastoma stem cells slowed their growth in vivo (P< 0.001). These findings are among the first to identify and profile glioblastoma CAFs. CAF recruitment by glioblastoma stem cells and creation of a pro-tumoral microenvironment in the perivascular niche housing glioblastoma stem cells, particularly in the SVZ, makes them an intriguing therapeutic target.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.