Abstract

Abstract Glioblastoma (GBM) is the most common and lethal brain cancer that invariably recurs after therapy due to presence of resistant GBM cells within hypoxic and peri-necrotic regions. Eradicating such GBM cells, which constitute a major source of tumor recurrence, is important to curb disease relapse. An endogenously expressed, spatially sensitive hypoxia reporter would therefore be a valuable tool to evaluate hypoxic zones in GBM in detail, and to measure the efficacy of hypoxia-activated drugs. For this purpose, we engineered a lentiviral vector that carries a hypoxia reporter, consisting of HIF response elements (HRE) that drive expression of UnaG fluorescent protein, which fluoresces independent of oxidative maturation. We validated the sensitivity of our reporter in vitro using U87MG, GBM2, and patient-derived GBM stem cell lines, and we performed intracranial transplantations of GBM cells in SCID mice to identify cells undergoing hypoxic stress in in vivo microenvironment. In addition, GL261 murine GBM cells with hypoxia reporter were intracranially implanted in C57BL/6 mice as syngeneic model for studies on immune responses. Brains from our transplant studies were dissociated and single-cell RNA sequencing (Drop-Seq) was performed to investigate heterogeneity in response to hypoxia within GBM cells and the cellular composition of microenvironment. We will also apply a hypoxia-activated prodrug, Evofosfamide (Evo), in our ongoing studies that can potentially eradicate hypoxic tumor cells and increase T cell infiltration and reverse immune suppression. As hypoxic niches are thought to confer resistance to radiation therapy (XRT), combining XRT with Evo could thus improve therapy efficacy. Our hypoxia gene reporter, combined with single-cell transcriptomics, could therefore serve as an effective tool to enable fundamental investigation of GBM microenvironment and could be used to evaluate therapies targeting tumor microenvironment to enhance GBM patient survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.