Abstract

Cystic fibrosis (CF) is the most common of rare hereditary diseases in Caucasians, and it is estimated to affect 75,000 patients globally. CF is a complex disease due to the multiplicity of mutations found in the CF transmembrane conductance regulator (CFTR) gene causing the CFTR protein to become dysfunctional. Correctors and potentiators have demonstrated good clinical outcomes for patients with specific gene mutations; however, there are still patients for whom those treatments are not suitable and require alternative CFTR-independent strategies. Although CFTR is the main chloride channel in the lungs, others could, e.g., anoctamin-1 (ANO1 or TMEM16A), compensate for the deficiency of CFTR. This review summarizes the current knowledge on calcium-activated chloride channel (CaCC) ANO1 and presents ANO1 as an exciting target in CF.

Highlights

  • Cystic fibrosis (CF), an autosomal recessive genetic multiorgan disease, is caused by an absent or dysfunctional CF transmembrane conductance regulator (CFTR) channel that mainly mediates chloride anion transport across the apical membrane of epithelial cells

  • A classification system groups mutations into six classes according to the functional consequences they generate on the CFTR protein: (1) class I: no functional CFTR protein; (2) class II: CFTR

  • According to several observations ((1) ANO1’s absence decreases airway secretion, (2) ANO1 is ubiquitously expressed in all the tissue affected by CF, including airway epithelial cells where ANO1 is a secondary chloride channel, (3) ANO1 provides a chloride pathway that is CFTR-independent, and (4) ANO1 is involved in HCO3 − secretion, which is highly important for fluid secretion and mucus hydration [76]), increasing ANO1 activity can probably compensate for CFTR deficiency (Figure 3)

Read more

Summary

Introduction

Cystic fibrosis (CF), an autosomal recessive genetic multiorgan disease, is caused by an absent or dysfunctional CF transmembrane conductance regulator (CFTR) channel that mainly mediates chloride anion transport across the apical membrane of epithelial cells. There is an interest in finding an alternative strategy to treat patients with CF independently of CFTR mutations. Alternative ion channels have been suggested to bypass CFTR dysfunction [3,4], such as ENaC [5], the solute carrier 26A9 (SLC26A9) [6], and calcium-activated chloride channel (CaCCs), including anoctamin-1 (ANO1 or TMEM16A) [4]. Such approaches might be efficient therapies for all patients, regardless of their CF mutations

Anoctamin-1
Structure of ANO1
Regulation and Activation of ANO1
Expression of ANO1
Physiological and Physiopathological Functions of ANO1
ANO1 inand
Drug Approaches Targeting ANO1 in Cystic Fibrosis
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.