Abstract
We report here on a spectroscopic study of Dy3+-doped and Tm3+-Dy3+ doped CaF2 as promising candidates to develop crystalline waveguide laser sources around 3 μm. The advantages of Tm3+ ions as sensitizers to improve the excitation of Dy3+ ions in CaF2 is demonstrated: an energy transfer efficiency from Tm3+ to Dy3+ ions of 99.6% has been reached for Dy3+ concentration as high as 2 at.%, by considering a Tm3+ ratio set at 5 at.%. Moreover, the behavior of such doped crystals in a laser waveguide configuration has been modeled and the modeling results show that it seems possible to achieve promising laser perspectives around 3 μm, with laser thresholds in the watt level for singly doped Dy3+:CaF2 and around 0.2–0.3 W for codoped Tm3+-Dy3+:CaF2, presenting both laser efficiencies in the order of 30%. Finally, the saturation of the absorption which is observed in the modeling for such codoped Tm3+-Dy3+:CaF2 waveguide at Dy3+ concentration below 1% is discussed and its origin is explained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.