Abstract

Protein-protein interaction (PPI) networks provide insights into understanding of biological processes, function and the underlying complex evolutionary mechanisms of the cell. Modeling PPI network is an important and fundamental problem in system biology, where it is still of major concern to find a better fitting model that requires less structural assumptions and is more robust against the large fraction of noisy PPIs. In this paper, we propose a new approach called t-logistic semantic embedding (t-LSE) to model PPI networks. t-LSE tries to adaptively learn a metric embedding under the simple geometric assumption of PPI networks, and a non-convex cost function was adopted to deal with the noise in PPI networks. The experimental results show the superiority of the fit of t-LSE over other network models to PPI data. Furthermore, the robust loss function adopted here leads to big improvements for dealing with the noise in PPI network. The proposed model could thus facilitate further graph-based studies of PPIs and may help infer the hidden underlying biological knowledge. The Matlab code implementing the proposed method is freely available from the web site: http://home.ustc.edu.cn/~yzh33108/PPIModel.htm.

Highlights

  • Proteins are crucial for almost all of functions in the cell

  • The experimental results demonstrated the present method can achieve a big performance improvement in dealing with the noise in Protein-protein interaction (PPI) network

  • There are a total of 5 PPI networks, three of which are human, one is yeast, and one is fruitfly

Read more

Summary

Introduction

Proteins are crucial for almost all of functions in the cell. Usually, they rarely perform their functions alone, but cooperate with each other by forming a huge network of protein-protein interactions (PPIs). MDS-GEO has been successfully applied to identify the false positive links in the PPI networks: after the embedding is learned, a pair of proteins that is connected in the original PPI network will be assigned an interaction if and only if they are close to each other in the embedded space.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.