Abstract

Osteosarcoma (OS) is the most common primary malignant bone tumor and is mainly diagnosed in children. Toll-like receptor 9 (TLR9) is expressed in various tumor cells and was correlated with cancer progression. However, the underlying mechanism of TLR9 on the OS progression remains unclear. Our previous study demonstrated that the expression of TLR9 was positively correlated with the development stage of OS. Herein, we further evaluated the actual roles and the molecular mechanism of TLR9 on regulating OS cell proliferation and metastasis. Our data showed that TLR9 was upregulated in OS cells compared to normal osteoblastic cells, and knockdown of TLR9 inhibited OS cell proliferation and induced cell cycle arrest by the decreased expression of cyclin D1, CDK2, and p-Rb, while TLR9 overexpression exerted the inverse effects. Furthermore, TLR9 overexpression could enhance the migration and invasion activities of the OS cells by the upregulation of matrix metalloproteinases 2 (MMP2) and MMP9, and the opposite result was observed in TLR9-silenced cells. Moreover, the nuclear factor kappa B (NF-κB) signaling pathway was activated by TLR9, and TLR9-induced malignant phenotype of OS cells was abrogated by the NF-κB antagonist BAY11-7082. Our study indicated that TLR9 might play a critical role in facilitating OS progression by activating the NF-κB signaling pathway, which may provide a valuable therapeutic target for OS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call