Abstract

BackgroundMonocytes, the primary myeloid cell-type in peripheral blood, are resistant to HIV-1 infection as a result of the lentiviral restriction factor SAMHD1. Toll-like receptors recognize microbial pathogen components, inducing the expression of antiviral host proteins and proinflammatory cytokines. TLR agonists that mimic microbial ligands have been found to have activity against HIV-1 in macrophages. The induction of restriction factors in monocytes by TLR agonist activation has not been well studied. To analyze restriction factor induction by TLR activation in monocytes, we used the imidazoquinoline TLR7/8 agonist R848 and infected with HIV-1 reporter virus that contained packaged viral accessory protein Vpx, which allows the virus to escape SAMHD1-mediated restriction. ResultsR848 prevented the replication of Vpx-containing HIV-1 and HIV-2 in peripheral blood mononuclear cells and monocytes. The block was post-entry but prior to reverse transcription of the viral genomic RNA. The restriction was associated with destabilization of the genomic RNA molecules of the in-coming virus particle. R848 treatment of activated T cells did not protect them from infection but treated monocytes produced high levels of proinflammatory cytokines, including type-I IFN that protected bystander activated T cells from infection.ConclusionThe activation of TLR7/8 induces two independent restrictions to HIV-1 replication in monocytes: a cell-intrinsic block that acts post-entry to prevent reverse transcription; and a cell-extrinsic block, in which monocytes produce high levels of proinflammatory cytokines (primarily type-I IFN) that protects bystander monocytes and T lymphocytes. The cell-intrinsic block may result from the induction of a novel restriction factor, which can be termed Lv5 and acts by destabilizing the in-coming viral genomic RNA, either by the induction of a host ribonuclease or by disrupting the viral capsid. TLR agonists are being developed for therapeutic use to diminish the size of the latent provirus reservoir in HIV-1 infected individuals. Such drugs may both induce latent provirus expression and restrict virus replication during treatment.Electronic supplementary materialThe online version of this article (doi:10.1186/s12977-016-0316-3) contains supplementary material, which is available to authorized users.

Highlights

  • Monocytes, the primary myeloid cell-type in peripheral blood, are resistant to HIV-1 infection as a result of the lentiviral restriction factor SAMHD1

  • We investigated the effect of the TLR7/8 agonist R848 on HIV-1 replication in primary myeloid and lymphoid cells using Vpx-containing HIV-1 and HIV-2

  • R848 induces a block to HIV‐1 infection of monocytes The TLR7/8 agonist R848 has been found to induce a block to HIV-1 replication in monocytes and monocyte-derived macrophages (MDM) [7, 8, 10]

Read more

Summary

Introduction

The primary myeloid cell-type in peripheral blood, are resistant to HIV-1 infection as a result of the lentiviral restriction factor SAMHD1. To analyze restriction factor induction by TLR activation in monocytes, we used the imidazoquinoline TLR7/8 agonist R848 and infected with HIV-1 reporter virus that contained packaged viral accessory protein Vpx, which allows the virus to escape SAMHD1-mediated restriction. Hofmann et al Retrovirology (2016) 13:83 double-stranded RNA (TLR3) and double-stranded DNA (TLR9) [1,2,3] Because of their ability to induce innate and adaptive responses, TLR agonists have been explored as antiviral therapeutic agents. The imidazoquinoline TLR7/8 agonists R848 (resiquimod) and gardiquimod were found to inhibit HIV-1 replication in MDMs by inducing soluble antiviral factors and in the case of gardiquimod, by acting as a nucleoside reverse transcriptase inhibitor [7, 8]. R848 is used to treat psoriasis and HSV-2 induced genital lesions and the related imidazoquinoline, imiquimod, is used to treat human papilloma virus genital warts [11, 12]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.