Abstract

Dry eye disease (DED) is one of the most common ocular surface diseases worldwide. DED has been characterized by excessive accumulation of reactive oxygen species (ROS), following significant corneal epithelial cell death and ocular surface inflammation. However, the key regulatory factor remains unclear. In this study, we tended to explore whether DUOX2 contributed to DED development and the underlying mechanism. Human corneal epithelial (HCE) cells were treated with hyperosmolarity, C57BL/6 mice were injected of subcutaneous scopolamine to imitate DED. Expression of mRNA was investigated by RNA sequencing (RNA-seq) and quantitative real-time PCR (qPCR). Protein changes and distribution of DUOX2, high mobility group box 1 (HMGB1), Toll-like receptor 4 (TLR4), and 4-hydroxynonenal (4-HNE) were evaluated by western blot assays and immunofluorescence. Cell death was assessed by Cell Counting Kit-8 (CCK8), lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Cellular ROS levels and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. RNA-seq and western blot assay indicated a significant increase of DUOX2 dependent of TLR4 activation in DED both in vitro and in vivo. Immunofluorescence revealed significant translocation of HMGB1 within corneal epithelial cells under hyperosmolar stress. Interestingly, after ablated DUOX2 expression by siRNA, we found a remarkable decrease of ROS level and recovered MMP in HCE cells. Moreover, knockdown of DUOX2 greatly inhibited HMGB1 release, protected cell viability and abolished inflammatory activation. Taken together, our data here suggest that upregulation of DUOX2 plays a crucial role in ROS production, thereafter, induce HMGB1 release and cell death, which triggers ocular surface inflammation in DED.

Highlights

  • Dry eye disease (DED) is a global ocular surface disorder

  • As far as we are aware, our present research for the first time reveals that Toll-like receptor 4 (TLR4)-dependent increase of Dual oxidase 2 (DUOX2) promotes oxidative stress in Human corneal epithelial (HCE) cells, which triggers the cell death by means of enhancing translocation of high mobility group box 1 (HMGB1) and accelerates ocular surface inflammation in DED

  • We discover that TLR4-mediated DUOX2 increase as a key regulator among oxidant pathways in DED

Read more

Summary

INTRODUCTION

Dry eye disease (DED) is a global ocular surface disorder. The prevalence of DED worldwide ranged from 5 to 50% respectively [1]. One of the outstanding characteristics of ocular surface oxidative stress is the overproduction of reactive oxygen species (ROS), within human corneal epithelial (HCE) cells [7, 8]. Moderate activation of response pathway is beneficial to restore homeostasis, but excessive activation could lead to the development of disease [15] It is remarkable, that the pathological effect of DUOX2 in ROS-cell death axis is still indistinct in DED. As far as we are aware, our present research for the first time reveals that Toll-like receptor 4 (TLR4)-dependent increase of DUOX2 promotes oxidative stress in HCE cells, which triggers the cell death by means of enhancing translocation of HMGB1 and accelerates ocular surface inflammation in DED

METHODS
RESULT
DISCUSSION
DATA AVAILABILITY STATEMENT
Findings
ETHICS STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call