Abstract
To understand the role of toll-like receptor 4 (TLR4) signaling in the regulation of iron-regulatory hormone, hepcidin by chronic alcohol consumption. For chronic alcohol intake studies, TLR4 mutant mice on C3H/HeJ background and wildtype counterpart on C3H/HeOuJ background were pair-fed with regular (control) and ethanol-containing Lieber De Carli liquids diets. Gene expression was determined by real-time quantitative PCR. Protein-protein interactions and protein expression were determined by co-immunoprecipitation and western blotting. The occupancy of hepcidin gene promoter was determined by chromatin immunoprecipitation assays. Chronic alcohol intake suppressed hepcidin mRNA expression in the livers of wildtype, but not TLR4 mutant, mice. The phosphorylation and nuclear translocation of nuclear factor (NF)-κB p65 subunit protein was observed in alcohol-fed wildtype, but not in alcohol-fed TLR4 mutant, mice. Similarly, alcohol induced the binding of NF-κB p50 subunit protein to hepcidin gene promoter in wildtype, but not in TLR4 mutant, mice. In contrast, the phosphorylation of Stat3 in the liver was stronger in alcohol-treated TLR4 mutant mice compared to alcohol-treated wildtype mice. The occupancy of hepcidin gene promoter by Stat3 was observed in alcohol-fed mutant, but not in wildtype, mice. An interaction between NF-κB p65 subunit protein and small heterodimer partner protein (SHP) was observed in the livers of both wildtype and TLR4 mutant mice fed with the control diet, as shown by co-immunoprecipitation studies. Alcohol intake elevated cytosolic SHP expression but attenuated its interaction with NF-κB in the liver, which was more prominent in the livers of wildtype compared to TLR4 mutant mice. Activation of TLR4 signaling and NF-кB are involved in the suppression of hepcidin gene transcription by alcohol in the presence of inflammation in the liver.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.