Abstract

Whole cell pertussis vaccines (Pw) induce Th1 responses and protect against Bordetella pertussis infection, whereas pertussis acellular vaccines (Pa) induce Ab and Th2-biased responses and also protect against severe disease. In this study, we show that Pw failed to generate protective immunity in TLR4-defective C3H/HeJ mice. In contrast, protection induced with Pa was compromised, but not completely abrogated, in C3H/HeJ mice. Immunization with Pw, but not Pa, induced a population of IL-17-producing T cells (Th-17), as well as Th1 cells. Ag-specific IL-17 and IFN-gamma production was significantly lower in Pw-immunized TLR4-defective mice. Furthermore, treatment with neutralizing anti-IL-17 Ab immediately before and after B. pertussis challenge significantly reduced the protective efficacy of Pw. Stimulation of dendritic cells (DC) with Pw promoted IL-23, IL-12, IL-1beta, and TNF-alpha production, which was impaired in DC from TLR4-defective mice. B. pertussis LPS, which is present in high concentrations in Pw, induced IL-23 production by DC, which enhanced IL-17 secretion by T cells, but the induction of Th-17 cells was also dependent on IL-1. In addition, we identified a new effector function for IL-17, activating macrophage killing of B. pertussis, and this bactericidal activity was less efficient in macrophages from TLR4-defective mice. These data provide the first definitive evidence of a role for TLRs in protective immunity induced by a human vaccine. Our findings also demonstrate that activation of innate immune cells through TLR4 helps to direct the induction of Th1 and Th-17 cells, which mediate protective cellular immunity to B. pertussis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.