Abstract

BackgroundObesity exerts negative effects on brain health, including decreased neurogenesis, impaired learning and memory, and increased risk for Alzheimer’s disease and related dementias. Because obesity promotes glial activation, chronic neuroinflammation, and neural injury, microglia are implicated in the deleterious effects of obesity. One pathway that is particularly important in mediating the effects of obesity in peripheral tissues is toll-like receptor 4 (TLR4) signaling. The potential contribution of TLR4 pathways in mediating adverse neural outcomes of obesity has not been well addressed. To investigate this possibility, we examined how pharmacological inhibition of TLR4 affects the peripheral and neural outcomes of diet-induced obesity.MethodsMale C57BL6/J mice were maintained on either a control or high-fat diet for 12 weeks in the presence or absence of the specific TLR4 signaling inhibitor TAK-242. Outcomes examined included metabolic indices, a range of behavioral assessments, microglial activation, systemic and neuroinflammation, and neural health endpoints.ResultsPeripherally, TAK-242 treatment was associated with partial inhibition of inflammation in the adipose tissue but exerted no significant effects on body weight, adiposity, and a range of metabolic measures. In the brain, obese mice treated with TAK-242 exhibited a significant reduction in microglial activation, improved levels of neurogenesis, and inhibition of Alzheimer-related amyloidogenic pathways. High-fat diet and TAK-242 were associated with only very modest effects on a range of behavioral measures.ConclusionsThese results demonstrate a significant protective effect of TLR4 inhibition on neural consequences of obesity, findings that further define the role of microglia in obesity-mediated outcomes and identify a strategy for improving brain health in obese individuals.

Highlights

  • Obesity exerts negative effects on brain health, including decreased neurogenesis, impaired learning and memory, and increased risk for Alzheimer’s disease and related dementias

  • The goal of this study is to examine the role of tolllike receptor 4 (TLR4) signaling in mediating the effects of obesity on microglial activation and adverse neural outcomes

  • To our knowledge, this study provides the first evidence that TLR4 signaling significantly contributes to the adverse effects of obesity on the hippocampus

Read more

Summary

Introduction

Obesity exerts negative effects on brain health, including decreased neurogenesis, impaired learning and memory, and increased risk for Alzheimer’s disease and related dementias. The potential contribution of TLR4 pathways in mediating adverse neural outcomes of obesity has not been well addressed. To investigate this possibility, we examined how pharmacological inhibition of TLR4 affects the peripheral and neural outcomes of diet-induced obesity. Diet-induced obesity (DIO) has been demonstrated to impair neurogenesis [8, 9], synaptic plasticity [10, 11], and neural function [12], as well as promote Alzheimer’s disease (AD)-related pathology [13, 14]. Activated macrophages yield unresolved inflammation in peripheral organs including the adipose tissue [15, 22] and liver

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call