Abstract

Respiratory syncytial virus (RSV) infection was recently reported to be associated with central nervous system (CNS) symptoms and neurological complications; however, related studies are very limited. Moreover, the molecular mechanism underlying RSV neuropathogenesis is still unclear. Our previous study revealed that toll-like receptor 4 (TLR4) and nucleolin (C23) could be modulated and that they played a role during RSV infection in mouse neuronal-2a (N2a) cells. In the present study, the effects of silencing of TLR4 and C23 on RSV propagation and N2a cellular responses were examined by using RNA interference technology. Four N2a cell treatment groups were established, namely, a normal control group, RSV control group, TLR4 siRNA + RSV group, and C23 siRNA + RSV group. Expression changes in NeuN protein and colocalization of C23 and TLR4 with RSV F protein were assessed using confocal microscopy. Changes in TLR4 and C23 mRNA expression, TLR4, C23, TLR3, TLR7, and p-NF-κB protein expression, and interleukin (IL)-8, IL-6, and tumor necrosis factor (TNF-α) cytokine secretion was measured using quantitative real-time reverse-transcription polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay, respectively. RSV titers and the apoptotic status of N2a cells were monitored using plaque formation assays and flow cytometry, respectively. The results indicated that TLR4 and C23 gene knockdown decreased the amount of F protein in RSV-infected N2a cells, inhibited RSV propagation, attenuated N2a neuronal injury, diminished cell apoptosis levels, downregulated TLR3 and TLR7 protein expression, and reduced inflammatory protein expression. Therefore, TLR4 and C23 knockdown influences cell injury, apoptosis and inflammatory protein expression in RSV-infected N2a cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.