Abstract

dsRNA is a by-product of viral replication capable of inducing an inflammatory response when recognized by phagocyte cells. In this study, we identify group IVA cytosolic phospholipase A2 (cPLA2alpha) as an effector of the antiviral response. Treatment of RAW 264.7 murine macrophage-like cells with the dsRNA analog polyinosinic:polycytidylic acid (poly-IC) promotes the release of free arachidonic acid that is subsequently converted into PGE2 by the de novo-synthesized cyclooxygenase-2 (COX-2) enzyme. These processes are blocked by the selective cPLA2alpha inhibitor pyrrophenone, pointing out to cPLA2alpha as the effector involved. In keeping with this observation, the cPLA2alpha phosphorylation state increases after cellular treatment with poly-IC. Inhibition of cPLA2alpha expression and activity by either small interfering RNA (siRNA) or pyrrophenone leads to inhibition of the expression of the inducible NO synthase (iNOS) gene. Moreover, COX-2-derived PGE2 production appears to participate in iNOS expression, because siRNA inhibition of COX-2 also leads to inhibition of iNOS, the latter of which is restored by exogenous addition of PGE2. Finally, cellular depletion of TLR3 by siRNA inhibits COX-2 expression, PGE2 generation, and iNOS induction by poly-IC. Collectively, these findings suggest a model for macrophage activation in response to dsRNA, whereby engagement of TLR3 leads to cPLA2alpha-mediated arachidonic acid mobilization and COX-2-mediated PGE2 production, which cooperate to induce the expression of iNOS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call