Abstract

Several human autoimmune diseases are characterized by increased expression of type 1 IFN-stimulated genes in both the peripheral blood and tissue. The contributions of different type I IFNs to this gene signature are uncertain as the type I IFN family consists of 13 alphas and one each of β, ε, κ, and ω subtypes. We sought to investigate the contribution of various IFNs to IFN signaling in primary human cell types. We stimulated primary skin, muscle, kidney, and PBMCs from normal healthy human donors with various TLR ligands and measured the expression of type I IFN subtypes and activation of downstream signaling by quantitative PCR. We show that IFNB1 is the dominant type I IFN expressed upon TLR3 and TLR4 stimulation, and its expression profile is associated with subsequent MX1 transcription. Furthermore, using an IFN-β-specific neutralizing Ab, we show that MX1 expression is inhibited in a dose-dependent manner, suggesting that IFN-β is the primary driver of IFN-stimulated genes following TLR3 and TLR4 engagement. Stimulation with TLR7/8 and TLR9 ligands induced IFNB1 and IFNA subtypes and MX1 expression only in PBMCs and not in tissue resident cell types. Concordantly, IFN-β neutralization had no effect on MX1 expression in PBMCs potentially because of the combination of IFNB1 and IFNA expression. Combined, these data highlight the potential role for IFN-β in driving local inflammatory responses in clinically relevant human tissue types and opportunities to treat local inflammation by targeting IFN-β.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.