Abstract
Many studies have investigated the immunostimulatory effects of bacteria, such as the anti-allergic effects of lactic acid bacteria (LAB) and LAB-fermented milk. Importantly, these anti-allergic effects have been observed for both viable and nonviable bacteria. However, there are no reported immunological effects of LAB isolated from kimoto, the traditional yeast starter culture used for brewing sake, which also involves spontaneous lactate fermentation. In this study, we determined whether the Leuconostoc mesenteroides and Lactobacillus sakei bacterial strains obtained from kimoto affected the production of interleukin-12 (IL-12), an inducer of the T-helper type-1 immune response. By incubating autoclaved bacteria with J774.1 macrophage-like cells, we found that L. sakei LK-117 induced a sustained increase in IL-12p40 production. The IL-12-inducing ability of LK-117 was unaffected by anti-TLR2 neutralization and was entirely inhibited when the LK-117 cells were treated with RNase. When LK-117 cells were treated with M-1, an N-acetylmuramidase, at varying concentrations and for different periods of time, the ability of the bacteria to induce IL-12 decreased quickly. Although an active fraction could be prepared by chromatography from the soluble products of enzymolysis, the fraction's induction ability was <2% of that of intact organisms, and induction ability disappeared completely upon anti-TLR2 neutralization after treating the active fraction with RNase. These results suggest that single-stranded RNA released from cells that were disrupted by autoclaving might act as a TLR ligand and provide a novel mechanism in which heat-killed LAB could be used to regulate immune activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.