Abstract

Traditional machine learning and data mining have made tremendous progress in many knowledge-based areas, such as clustering, classification, and regression. However, the primary assumption in all of these areas is that the training and testing data should be in the same domain and have the same distribution. This assumption is difficult to achieve in real-world applications due to the limited availability of labeled data. Associated data in different domains can be used to expand the availability of prior knowledge about future target data. In recent years, transfer learning has been used to address such cross-domain learning problems by using information from data in a related domain and transferring that data to the target task. In this article, a transfer-learning possibilistic c-means (TLPCM) algorithm is proposed to handle the PCM clustering problem in a domain that has insufficient data. Moreover, TLPCM overcomes the problem of differing numbers of clusters between the source and target domains. The proposed algorithm employs the historical cluster centers of the source data as a reference to guide the clustering of the target data. The experimental studies presented here were thoroughly evaluated, and they demonstrate the advantages of TLPCM in both synthetic and real-world transfer datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.