Abstract

The insulated gate bipolar transistor (IGBT) is popularly used in high power, high frequency power-electronic applications such as motor control and inverters. These applications require well designed thermal management system to ensure the protection of IGBTs. Choice simulation tools for accurate prediction of device power dissipation and junction temperature become important in achieving optimised designs. In this paper, thermal analysis of a 1200 A, 3.3 kV IGBT module was investigated and analysed using the three-dimensional transmission line matrix (3D-TLM) method. The results show a three-dimensional visualisation of self-heating phenomena in the device. Since the comparison TLM results with the analytical solutions do not exist for this IGBT module, we use the MSC.NASTRAN tool to find the similar range of the temperatures. Results are compared. Typically, IGBT is used in a three-phase inverter leg where the control signals are generated via PWM scheme so, the prediction of the temperature rise is important in the pulse operation conditions for the IGBT device. A view of the dynamic thermal temperature rise is obtained with 100 W-step pulse dissipation applied at IGBT chips. The temperature rises are calculated using TLM method during the PWM load cycles. Simulations give clear indications of the importance of the spreader material and are helpful in selecting the proper one. TLM has been successful in modelling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The three-dimensional results show that method has a considerable potential in power devices thermal analysis and design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.