Abstract
Delivery stations play important roles in logistics systems. Well-designed delivery station planning can improve delivery efficiency significantly. However, existing delivery station locations are decided by experts, which requires much preliminary research and data collection work. It is not only time consuming but also expensive for logistics companies. Therefore, in this article, we propose a data-driven pipeline that can transfer expert knowledge among cities and automatically allocate delivery stations. Based on existing well-designed station location planning in the source city, we first train a model to learn the expert knowledge about delivery range selection for each station. Then we transfer the learned knowledge to a new city and design three strategies to select delivery stations for the new city. Due to the differences in characteristics among different cities, we adopt a transfer learning method to eliminate the domain difference so that the model can be adapted to a new city well. Finally, we conduct extensive experiments based on real-world datasets and find the proposed method can solve the problem well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.