Abstract

The arc-fault phenomenon in photovoltaic (PV) systems has emerged as a major problem in recent years. Existing studies on arc-fault detection in conventional PV systems primarily focus on detecting typical stable arc-faults. Low-energy arc-faults are more challenging to detect than stable arc-faults because of their low current distortions, short durations, and nonlinear properties. These low-energy arc-faults, which are precursors to stable arc-faults, could even inflict serious damage on the system components. Here, a transfer learning-based low-energy arc-fault detection network (TL–LEDarcNet) using a two-stage training method is proposed to proactively detect series DC arc-faults by considering low-energy arc-faults. A one-layer long short-term memory network combined with a lightweight one-dimensional convolutional neural network was developed to detect low-energy arc-faults by only using the sensed current information. The results of offline and online experiments conducted with a commercial grid-connected PV inverter indicate that the proposed method can perform real-time operations on a single-board computer and detect low-energy arc-faults with an accuracy of 95.8%, which is higher than previous methods considered in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.