Abstract

In many applications, top-k query is an important operation to return a set of interesting points in a potentially huge data space. The existing algorithms, either maintaining too many candidates, or requiring assistant structures built on the specific attribute subset, or returning results with probabilistic guarantee, cannot process top-k query on massive data efficiently. This paper proposes a sorted-list-based TKAP algorithm, which utilizes some data structures of low space overhead, to efficiently compute top-k results on massive data. In round-robin retrieval on sorted lists, TKAP performs adaptive pruning operation and maintains the required candidates until the stop condition is satisfied. The adaptive pruning operation can be adjusted by the information obtained in round-robin retrieval to achieve a better pruning effect. The adaptive pruning rule is developed in this paper, along with its theoretical analysis. The extensive experimental results, conducted on synthetic and real-life data sets, show the significant advantage of TKAP over the existing algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.