Abstract

Effective sublingual peptide immunization requires overcoming challenges of both delivery and immunogenicity. Mucosal adjuvants, such as cyclic-dinucleotides (CDN), can promote sublingual immune responses but must be codelivered with the antigen to the epithelium for maximum effect. We designed peptide-polymer nanofibers (PEG-Q11) displaying nona-arginine (R9) at a high density to promote complexation with CDNs via bidentate hydrogen-bonding with arginine side chains. We coassembled PEG-Q11 and PEG-Q11R9 peptides to titrate the concentration of R9 within nanofibers. In vitro, PEG-Q11R9 fibers and cyclic-di-GMP or cyclic-di-AMP adjuvants had a synergistic effect on enhancing dendritic cell activation that was STING-dependent and increased monotonically with increasing R9 concentration. The polyvalent display of R9 on assembled nanofibers was significantly more effective at promoting CDN-mediated DC activation in vitro than mixing nanofibers with an equimolar concentration of unassembled R9 peptide. The sublingual administration of nanofibers revealed a bell-shaped trend between increasing R9 concentration and enhancements to antigen trafficking and the activation of DCs in the draining lymph nodes. Intermediate levels of R9 within sublingually administered PEG-Q11 fibers were optimal for immunization, suggesting a balance between polyarginine's ability to sequester CDNs along the nanofiber and its potentially detrimental mucoadhesive interactions. These findings present a potentially generalizable biomaterial strategy for enhancing the potency of CDN adjuvants and reveal important design considerations for the nascent field of sublingual biomaterial immunization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.