Abstract
Titer on Chip (Flu-ToC) is a new technique for quantification of influenza hemagglutinin (HA) concentration. In order to evaluate the potential of this new technique, a comparison of Flu-ToC to more conventional methods was conducted using recombinant HA produced in a baculovirus expression system as a test case. Samples from current vaccine strains were collected from four different steps in the manufacturing process. A total of 19 samples were analysed by Flu-ToC (blinded), single radial immunodiffusion (SRID), an enzyme-linked immunosorbent assay (ELISA), and the purity adjusted bicinchoninic acid assay (paBCA). The results indicated reasonable linear correlation between Flu-ToC and SRID, ELISA, and paBCA, with regression slopes of log-log plots being 0.91, 1.03, and 0.91, respectively. The average ratio for HA content measured by Flu-ToC relative to SRID, ELISA, and paBCA was 83%, 147%, and 81%, respectively; indicating nearly equivalent potency determination for Flu-ToC relative to SRID and paBCA. These results, combined with demonstrated multiplexed analysis of all components within a quadrivalent formulation and robust response to HA strains over a wide time period, support the conclusion that Flu-ToC can be used as a reliable and time-saving alternative potency assay for influenza vaccines.
Highlights
Exciting advances in flu vaccine production technology have been realized during the past few years
Virus-like particles (VLPs) are being developed as novel flu vaccines with production methods ranging from recombinant antigens produced in insect cell culture (e.g., Novavax) to plant-based platforms (e.g., Fraunhofer and Medicago Inc.)
Flu-ToC Qualitative Response One of the primary objectives of this study was to determine whether Flu-ToC could be used for the quantitation of HA at all stages of the manufacturing process, including crude extracts from cell culture where the antigen concentration is low and ‘‘contaminant’’ levels are high
Summary
Exciting advances in flu vaccine production technology have been realized during the past few years. Virus-like particles (VLPs) are being developed as novel flu vaccines with production methods ranging from recombinant antigens produced in insect cell culture (e.g., Novavax) to plant-based platforms (e.g., Fraunhofer and Medicago Inc.). There are promising advances in the development and production of a ‘‘universal flu vaccine’’ [3]. Despite these innovations in production methods new flu vaccines are still being characterized by conventional analytical methods, as recently noted by Thompson et al [4]. The SRID assay is an antigen-antibody based assay that relies on seasonal antigens and antisera generated and distributed by Reference Laboratories around the world (e.g., CBER in the US, NIBSC in the UK, TGA in Australia, NIID in Japan). While reference reagents are provided by CBER and other Reference Laboratories, gels and other reagents must be prepared in-house and the methodology independently validated by each vaccine producer
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.