Abstract

Streptomyces bingchenggensis is a promising producer of milbemycins (MILs), the macrolide pesticide used widely in agriculture. The relationship between different biosynthetic gene clusters (BGCs) and the MIL BGC remains unclear, which hinders the precise metabolic engineering of S. bingchenggensis for titer improvement. To address this issue, this study discovered the regulatory function of a previously unidentified regulator KelR on a type-II polyketide BGC, MIL BGC, and two other BGCs, and caused titer improvement. First, a type II polyketide synthase (PKS) gene cluster kel with a bidirectional effect on MIL biosynthesis was found using transcriptome analysis. A Streptomyces antibiotic regulatory protein (SARP) family regulator KelR from the kel cluster was then characterized as an activator of several BGCs including mil and kel clusters. Metabolic competition between mil and kel clusters at the late fermentation stage was confirmed. Finally, KelR and those BGCs were manipulated in S. bingchenggensis, which led to a 71.7% titer improvement of MIL A3/A4 to 4058.2 ± 71.0 mg/L. This study deciphered the regulatory function of a previously unidentified regulatory protein KelR on several BGCs including mil in S. bingchenggensis and provided an example of coordinating metabolic competition and coregulation for titer improvement of secondary metabolites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.