Abstract

Four phenylphosphonate-stabilized titanium-oxo clusters with varying functional ligands, namely, [Ti8(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)8(O3PC6H5)4(cat)2] (cat = catecholate), [Ti8(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)8(O3PC6H5)4(O2C10H6)2] (O2C10H6 = naphthalene-2,3-diolate), [Ti6(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)6(O3PC6H5)2(4-DMAB)2] (4-DMAB = 4-dimethylaminobenzoate), and [Ti6(μ3-O)2(μ2-O)2(μ2-OiPr)4(OiPr)6(O3PC6H5)2(4-CBA)2] (4-CBA = 4-cyanobenzoate) were synthesized and structurally characterized. The introduction of catecholate ligands effectively extended the visible absorption region up to 670 nm and reduced the band gap to 2.1 eV. DFT calculations revealed that the ligand-based energy levels could effectively modify the band structure of titanium-oxo clusters. The ligand-to-core charge transfer (LCCT) transition from the functional ligands to the cluster core is responsible for the low-energy charge transfer states. Photoelectrochemical and photocatalytic experiments show that functional ligands have significant influence on the physicochemical properties of titanium-oxo clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call