Abstract
Although nanozinc oxide (nano-ZnO) is applied widely in photocatalysts and gas sensors and in biological fields, it can cause serious oxidative stress and DNA damage to mammalian cells. Our aim in this study was to reduce the cytotoxicity of nano-ZnO by coating it with a TiO(2) layer. We used a sol-gel method to synthesize core (nano-ZnO)/shell (TiO(2)) nanoparticles (NPs) with various degrees of coating. Transmission electron microscopy and Raman spectroscopy confirmed that TiO(2) was coated on the nano-ZnO. Moreover, a decrease in the intensity of the pre-edge signal in Ti K-edge X-ray absorption near edge structure spectra revealed that the core/shell NPs had more Ti-O coordination than pure TiO(2) particles; in addition, the Zn K-edge extended X-ray absorption fine structure spectra revealed that after the ZnO NPs had been coated with TiO(2), the coordination number of the ZnO shell increased to 3.3 but that of the ZnZn shell decreased to 6.2, providing further evidence for the ZnO/TiO(2) core/shell structure. To ensure that the core/shell structures did indeed decrease the toxicity of nano-ZnO, we tested the effects of equal amounts of physical mixtures of ZnO and TiO(2) NPs for comparison, employing methyl tetrazolium (MTT), interleukin-8 (IL-8), lactate dehydrogenase (LDH), and 2',7'-dichlorofluorescin diacetate (DCFH-DA) to assess the particle-induced cytotoxicity, inflammatory response, membrane damage, and intercellular reactive oxygen species (ROS). From X-ray diffraction patterns, we identified the TiO(2) shell as having an amorphous phase, which, unfortunately, exhibited slight cytotoxicity toward the human lung epithelial cell line (A549). Nevertheless, our core/shell nanostructures exhibited less oxidative stress toward A549 cells than did their corresponding ZnO/TiO(2) physical mixtures. In addition, a greater coating of TiO(2) decreased the toxicity of the ZnO NPs. It appears that the ZnO/TiO(2) core/shell structure moderated the toxicity of nano-ZnO by curtailing the release of zinc ions and decreasing the contact area of the ZnO cores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.