Abstract

In order to improve the wear resistance of tool steel, a study of TiN surface-alloying treatment on 1% carbon steel by irradiation with a CO2 laser beam was performed. Argon and nitrogen were used as shielding gases, and their effects on the formation of the surface-alloyed layer were investigated. The effect of cobalt additions to the TiN powder on the hardness of the alloyed layer was also investigated. When argon was used as shielding gas, the depth of the alloyed layer was increased compared with the depth when nitrogen was used as a shielding gas. A portion of the TiN decomposed into titanium in the argon environment, the nitrogen apparently being lost as a gas. The structure of the surface-alloyed layer was composed of a ferritic phase without martensitic structure even at high cooling rates. When this layer was annealed at 1000 ° C for 3 h, part of the titanium precipitated as TiC particles. The hardness of the annealed alloyed layer increased to about 500 Hv. This increase in hardness was accompanied by the appearance of martensite. When nitrogen was used as shielding gas, decomposition of TiN was suppressed and the hardness of the alloyed layer reached 850 Hv. These layers had a martensitic structure. Thus, nitrogen is preferable to argon as a shielding gas if a martensitic structure is desired in this system. When 5% cobalt was added to the TiN powder, the hardness of the alloyed layer increased to 1100 Hv. This increased hardness is caused by stabilization of the martensitic structure caused by an increase in theMs temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.