Abstract
To date, plenty of new alternative materials for phosphopeptides enrichment prior to mass spectrometry (MS) analysis appear, especially immobilized metal ion affinity chromatography (IMAC) materials. The variable combinations with different metal ions, chelating ligands and solid supports offer full of optionality for IMAC. However, further improvement was predicted by the tedious and complex synthetic process. In this work, a novel covalent organic framework (COF)-based IMAC material (denoted TpPa-2-Ti4+) was prepared simply by direct immobilizing Ti (IV) into TpPa-2 COFs without any extra chelating ligands. The structure and composition of as-prepared composites were confirmed by PXRD, FT-IR and XPS, and a new flower-shaped Ti4+-IMAC with regular micro-nano hierarchical structure was observed in the SEM and TEM images. The obtained titanium (IV) ion-modified covalent organic frameworks demonstrated low limit of detection (4 fmol) and largely-satisfactory selectivity (β-casein: BSA=1:100) for phosphopeptide capturing from β-casein. Similarly, 18 and 17 phosphopeptides could be easily detected in the tryptic digest of α-casein or the digest mixture of α-casein and BSA (1:50). They were also successfully applied for enrichment of phosphopeptides from non-fat milk and HeLa cells with high sensitivity and satisfactory selectivity. All above results showed that the new titanium (IV) ion-modified covalent organic framework is expected to be a potential IMAC for phosphopeptide enrichment in large-scale phosphoproteomics studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.