Abstract

Symmetrical bis‐Schiff bases (LH 2) have been synthesized by the condensation of 1,6‐hexanediamine (hn) and carbonyl or dicarbonyl. One of the synthesized Schiff bases has been subjected to the molecular docking for the prediction of their potentiality against coronavirus (SARS‐CoV‐2). Molecular docking revealed that tested Schiff base possessed high binding affinity with the receptor protein of SARS CoV‐2 compared with hydroxychloroquine (HCQ). The ADMET analysis showed that ligand is non‐carcinogenic and less toxic than standard HCQ. Schiff bases acting as dibasic tetra‐dentate ligands formed titanium (IV) complexes of the type [TiL(H2O)2Cl2] or [TiL(H2O)2]Cl2 being coordinated through ONNO donor atoms. Ligands and complexes were characterized by the elemental analysis and physicochemical and spectroscopic data including FTIR, 1H NMR, mass spectra, UV‐Visible spectra, molar conductance, and magnetic measurement. Optimized structures obtained from quantum chemical calculations supported the formation of complexes. Antibacterial, antifungal, and anti‐oxidant activity assessments have been studied for synthesized ligands and complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.