Abstract

Titanium isotopes recorded in glacial diamictites with depositional ages between 2.9 and 0.3 Ga show that the upper continental crust became significantly more felsic relative to the present-day crust during the amalgamation of the Paleoproterozoic Nuna and the Neoproterozoic Gondwana supercontinents. This can be attributed to the continental collisions involved in the assembly of Nuna and Gondwana. The resulting high topographic relief of Nuna and Gondwana orogens must have resulted in an enhanced erosional supply from the continents to oceans. The step changes in the development of organismal complexity from prokaryotes to eukaryotes, and eventually metazoans, appear to be temporally correlated to instances where collisional mountain-building sustained an elevated nutrient supply from the continents to oceans. The nutrient surge associated with the rise of the Gondwana mountains likely provided the necessary impetus for the Neoproterozoic ecological expansion of eukaryotes and the eventual radiation of metazoans. A similar link between the enhanced nutrient supply from Nuna mountains and the radiation of early eukaryotes is plausible, although its mechanistic underpinnings remain unclear. The termination of Nuna orogeny and its transition to Rodinia without significant breakup and subsequent collisional orogenesis corresponds to the long lull in Earth's redox and biological evolution in its middle age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call