Abstract

Phengite chemistry has been investigated in experiments on a natural SiO2–TiO2-saturated greywacke and a natural SiO2–TiO2–Al2SiO5-saturated pelite, at 1.5–8.0 GPa and 800–1,050°C. High Ti-contents (0.3–3.7 wt %), Ti-enrichment with temperature, and a strong inverse correlation of Ti-content with pressure are the important features of both experimental series. The changes in composition with pressure result from the Tschermak substitution (Si + R2+ = AlIV + AlVI) coupled with the substitution: AlVI + Si = Ti + AlIV. The latter exchange is best described using the end-member Ti-phengite (KMgTi[Si3Al]O10(OH)2, TiP). In the rutile-quartz/coesite saturated experiments, the aluminoceladonite component increases with pressure while the muscovite, paragonite and Ti-phengite components decrease. A thermodynamic model combining data obtained in this and previous experimental studies are derived to use the equilibrium MgCel + Rt = TiP + Cs/Qz as a thermobarometer in felsic and basic rocks. Phengite, rutile and quartz/coesite are common phases in HT-(U)HP metamorphic rocks, and are often preserved from regression by entrapment in zircon or garnet, thus providing an opportunity to determine the T–P conditions of crystallization of these rocks. Two applications on natural examples (Sulu belt and Kokchetav massif) are presented and discussed. This study demonstrates that Ti is a significant constituent of phengites that could have significant effects on phase relationships and melting rates with decreasing P or increasing T in the continental crust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call