Abstract

The demand to synthesize economical detoxification adsorbents of organic pollutants has been a thriving solicitude for most environmental research aspirants. Here, we synthesized a titanium(III) oxide doped with spherical shaped meta-aminophenol formaldehyde magnetic microspheres (Ti2O3/mAPF MMSs) by the polymerization method of Ti2O3 nanoparticles with formaldehyde and m-aminophenol. SEM analysis confirmed the synthesized material as crystalline in nature and had ~400–450 nm sized particles. The physical characterization of the Ti2O3/mAPF MMSs were quantitatively revealed by FTIR spectrum and PXRD in elaboration. The carboxylate frequency and the characteristic apex of the titanium–oxygen bond was found in the FTIR spectrum for Ti2O3/mAPF derived from Ti2O3. The PXRD patterns proved that the synthesized magnetic microspheres contained Ti2O3 nanoparticles. The experimental methods of TGA and DTA confirmed the thermal stability and its composition of Ti2O3/mAPF MMSs. The kinetic adsorption study for methyl violet was confirmed as first-order kinetics. The present study was to investigate the dye desorption of methyl violet from simulated water samples by using a titanium(III) oxide doped with meta-aminophenol formaldehyde magnetic microspheres in an adsorption process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call