Abstract

Experiments were conducted with hydrous olivine to investigate the defect responsible for the influence of water (hydrogen structurally incorporated as hydroxyl) on the olivine rheology. Solution–gelation derived Fo90 olivine doped with nominally 0.04–0.1 wt.% TiO2 was first hot-pressed and then deformed in platinum capsules at 300 MPa confining pressure and temperatures from 1200–1350°C. The water content was not buffered so that deformation occurred at water-undersaturated conditions. Due to the enhanced grain growth under hydrous conditions, the samples were at least a factor of three more coarse-grained than their dry counterparts and deformed in powerlaw creep at differential stresses as low as a few tens of MPa. Since all experiments were conducted at the same confining pressure, the essentially linear relationship between strain rate and water content was for the first time determined independently of an activation volume. Infrared spectra are dominated by absorption bands at 3572 and 3525 cm−1. These bands also predominate in infrared spectra of natural olivine, and can only be reproduced experimentally in the presence of titanium. In contrast to the previous interpretation of the hydrous rheology in terms of intrinsic point defects, the experiments show that extrinsic defects (impurities) in natural olivine play the dominant role for water weakening at the water contents expected for most of the upper mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.