Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are produced in large quantities, raising concerns about their impact for human health. The aim of this study was to deeply characterize TiO2-NPs genotoxic potential to lung cells, and to link genotoxicity to physicochemical characteristics, e.g., size, specific surface area, crystalline phase. A549 cells were exposed to a panel of TiO2-NPs with diameters ranging from 12 to 140 nm, either anatase or rutile. A set of complementary techniques (comet and micronucleus assays, gamma-H2AX immunostaining, 8-oxoGuanine analysis, H2-DCFDA, glutathione content, antioxidant enzymes activities) allowed us to demonstrate that small and spherical TiO2-NPs, both anatase and rutile, induce single-strand breaks and oxidative lesions to DNA, together with a general oxidative stress. Additionally we show that these NPs impair cell ability to repair DNA, by inactivation of both NER and BER pathways. This study thus confirms the genotoxic potential of TiO2-NPs, which may preclude their mutagenicity and carcinogenicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.