Abstract

Photosynthetic microorganisms such as cyanobacteria can convert photons into electrons, providing ideal eco-friendly materials for converting solar energy into electricity. However, the electrons are hardly transported outside the cyanobacterial cells due to the insulation feature of the cell wall/membrane. Various nanomaterials have been reported to enhance extracellular electron transfer of heterotrophic electroactive microorganisms, but its effect on intact photosynthetic microorganisms remains unclear. In this study, we investigated the effect of six different nanomaterials on the photocurrent generation of cyanobacterium Synechocystis sp. PCC 6803. Among the nanomaterials tested, titanium dioxide (TiO2) nanoparticles increased the photocurrent generation of Synechocystis sp. PCC 6803 up to four-fold at the optimum concentration of 2 mg/mL. Transmission electron microscopy and scanning electron microscopy showed that TiO2 bound to cyanobacterial cells and likely penetrated inside of cell membrane. Photochemical analyses for photosystems showed that TiO2 blocked the electrons transfer downstream in PS I, implying a possible extracellular electron pathway mediated by TiO2. This study provides an alternative approach for enhancing the photocurrent generation of cyanobacteria, showing the potential of photosynthetic-nanomaterial hybrids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.