Abstract

Arabidopsis thaliana (L.) Heynh. was used as a model plant to investigate the biochemical and molecular response upon coexposures to tetracycline (TC) and titanium oxide nanoparticles (TiO2 NPs). Results showed that 1 mg/L TC severely reduced A. thaliana biomass by 33.3% as compared with the control; however, the presence of 50 and 100 mg/L TiO2 NPs alleviated TC toxicity, increasing fresh biomass by 45% and 28%, respectively, relative to the TC alone treatment. The presence of TC notably decreased Ti accumulation in both shoots and roots. Antioxidant enzyme activity, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD), in A. thaliana shoots and roots indicated that TC significantly increased the activity of reactive oxygen species (ROS) scavengers. However, in the coexposure treatments, TiO2 NPs reduced antioxidant enzyme activity back to the control levels. The relative expression of genes encoding sulfur assimilation and glutathione biosynthesis pathwa...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.